hp LaserJet printer family

print media guide
Warranty

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with respect to this information. HEWLETT-PACKARD SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for any direct, indirect, incidental, consequential, or other damage alleged in connection with the furnishing or use of this information.
Appendix B Ordering HP print media
Laser paper ......................................................... 35
Glossy paper ......................................................... 36
Heavy paper, cover paper, and cardstock ........................................ 37
Recycled paper ......................................................... 37
Transparencies ......................................................... 38

Appendix C Glossary
Index
HP LaserJet printers quickly and quietly produce documents of excellent print quality. A variety of print media, including paper, envelopes, labels, and overhead transparencies, can be used in your HP LaserJet printer. However, to ensure consistent performance and long-term reliability, the print media must be designed for use with laser printers. Many choices of high-quality print media are available to laser printer users.

This manual provides guidelines for selecting and using print media to help you get the best performance from your HP LaserJet printer. It also contains information to help troubleshoot HP LaserJet printer problems that might be caused by poor-quality print media.

You might encounter some terms that are unfamiliar to you. For more information about these terms, see the glossary in Appendix C on page 39.

The standards discussed in this manual do not apply to paper that is being scanned, copied, or faxed through the scan path on an HP LaserJet MFP (multifunction peripheral). Check the individual product manuals for that information.

---

**Note**

This document does not support HP LaserJet 2686A, HP LaserJet Plus, HP LaserJet 500, or HP LaserJet 2000 printers. See the user guide for each printer for information about print-media specifications.

**Note**

When HP LaserJet printers are discussed in this guide, the information pertains to HP Monochrome LaserJet printers, HP color LaserJet printers, and HP LaserJet MFPs unless otherwise noted. For specific information about what media your printer or MFP supports, see the documentation that came with your product.
How HP LaserJet printers work

HP LaserJet printers use laser and electrophotographic technologies. To print a page in a laser printer, the print media must be picked from the input tray one sheet at a time and transported through the paper path. While passing through the paper path, a scanning laser beam writes an electrostatic image onto a rotating photosensitive drum. As this image passes the developing station, a dry, powdery toner is attracted to the image areas. In an HP color LaserJet printer, this process is similar for each of the four toner colors.

The developed image then advances to the transfer station, where the drum contacts the paper or other print media and the toner image is electrostatically transferred onto the paper. After transfer, the print media passes through the fuser, where heat and pressure are applied and the toner fuses (melts) onto the print media. The print media is then delivered to the output bin, ready for use.

To summarize, to create the printed image the print media must be transported through the printer, charged electrostatically, and heated. This is why print media properties such as cleanliness, electrical resistivity, caliper, finish, moisture content, and stiffness can affect the print quality and media-handling performance of your HP LaserJet printer.

Alternative sources of information

The media manufacturer and vendor can provide you with information about the suitability of print media for an HP LaserJet printer.

If you have tried the suggestions that are outlined in this document and in your user guide and you still need assistance, call the dealer from whom you purchased your printer. You can also obtain support through the worldwide network of HP Sales and Service Offices. (See the sales and service listings that are contained in any HP LaserJet printer user guide.)

Visit HP’s website at http://www.hp.com to find out more about your HP printer and HP print media.
Guidelines for using media

HP LaserJet printers are designed to be flexible in the types of print media they can use. However, it is advisable to use good-quality media, and, specifically, HP paper that is designed to work with your HP LaserJet printers (see “Ordering HP print media” on page 35). This section is designed to help you select media that works best with your HP LaserJet printer.

HP LaserJet printers can also use non-HP brand media that falls within the specifications for supported media. Using non-HP brand media will not typically damage the printer or void the warranty if the media meets those specifications.

Note
Properties of non-HP brand media, over which Hewlett-Packard has no control, are subject to change. The customer assumes all responsibility for the quality and performance of media. Although testing media helps to characterize its performance, long-term satisfaction requires manufacturer process-quality control as well as proper handling and storage by the customer.

Note
If you are planning a large purchase of print media, first print a small quantity in your printing environment. Subject the print media to the temperature, humidity, and printing applications in which the print media will be used. Hewlett-Packard recommends that you ask your print media vendor for a guarantee that its print media will perform satisfactorily in your HP LaserJet printer and that the vendor will assume responsibility for the replacement of any print media that does not print acceptably.

Note
Hewlett-Packard recommends testing print media before purchasing large quantities.
Using print media

This section contains information about the following activities:

- Preparing print media for use
- Using paper
- Using envelopes
- Using labels
- Using overhead transparencies
- Printing on both sides of the paper
- Preparing laser-printed mailings

Preparing print media for use

After purchasing print media, you might have to prepare it for use. Print media needs some time to stabilize in a new environment. To prepare print media, keep it in its protective packaging and store it in the environment in which it will be used. For small quantities, such as one or two reams, store the print media for one to two days. For larger quantities or if the change in the environment is significant, a week or more might be needed.

If print media is not properly prepared, the edges in the ream can become wavy or the sheets might curl soon after the package is opened.

Using paper

“Plain paper” is an inaccurate term. All papers are designed and manufactured for a specific use. Papers that are designed for the electrophotographic process that laser printer and copy machines use are usually called laser- or copier-grade papers. High-quality laser and copier papers are usually made from 100 percent chemical wood pulp and are characterized by a smooth surface, controlled electrical properties, heat stability, and cleanliness. These characteristics ensure good image transfer, fusing without excessive curl, and reliable printer operation.

Note

Paper is being produced with higher filler levels, and the small particulate that is used for the fillers (such as calcium carbonate, clay, or talc) must be properly bound or sealed in the sheet during the paper-making process to prevent contamination of the printer. For more information, see “Coated paper” on page 6.

Some print jobs require a paper that has a more prestigious look or feel. Letterhead papers generally have a watermark and often use cotton fiber. These papers tend to have a rougher surface, and their properties might not be controlled as well as those of photocopier papers. Although your HP LaserJet printer will print black satisfactorily on many of these bond papers, using this type of paper with an HP color LaserJet printer can degrade color print quality. However, paper manufacturers are now making laser-grade bond papers, which have properties that are optimized for laser printing.
Reading a ream label

A ream label is typically placed or printed on the outside of the paper wrapping. The ream label usually lists the weight, size, quantity of sheets, grain direction, and other information. The preferred side for printing might be indicated by an arrow on the ream label, although some manufacturers do not specify a print side. Paper should be loaded into the printer so that the indicated side will be printed (or printed first for duplexing). The preferred side might face-up or face-down in the input tray, depending on the printer model and the input source. (See the support documentation for your printer model to determine the orientation in the input tray.)

The following illustration shows an example of a ream label. For more information about the items on the label, see the glossary in Appendix C on page 39.

<table>
<thead>
<tr>
<th>Brand Name</th>
<th>Woods Multi-Purpose Special®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Size</td>
<td>8½ x 11 (216 x 279 mm)</td>
</tr>
<tr>
<td>Basis Weight</td>
<td>Sub 20/50 (75 g/m²)</td>
</tr>
<tr>
<td>Paper Type</td>
<td>10M</td>
</tr>
<tr>
<td>Surface Finish</td>
<td>Long Grain Smooth Finish</td>
</tr>
<tr>
<td>Paper Color</td>
<td>Multi-Purpose for Office Copiers, Laser Printers and Offset Printing</td>
</tr>
<tr>
<td>Brightness Level</td>
<td>White 90 Brightness</td>
</tr>
<tr>
<td>Orientation</td>
<td>Print This Side First</td>
</tr>
</tbody>
</table>

Opening and loading paper

Follow this suggested process when you open paper and load it into the printer input tray:

1. Place the wrapped ream of paper on a flat surface, with the seam side up.

2. Read the ream label that is located on the outside of the paper wrapping and note the direction of the arrow that indicates the preferred print side (if one is included). (See “Reading a ream label” on page 5.)

3. Open the paper wrapping and inspect for any damage to the sheets such as bent corners, wrinkles, nicked edges, or glue contamination. Discard any damaged sheets.

4. Handle the open stack of paper as little as possible. However, before loading the paper into the tray, flex the stack in both directions to “break” any locked edges. Do not fan or separate the paper into several stacks because doing so creates air pockets between the sheets that can cause jams or multiple-sheet feeds.
Paper types

This section describes the following paper types:
- Archival paper
- Bond paper or letterhead
- Coated paper
- Colored paper
- Copier paper (plain paper)
- Embossed and debossed paper
- Glossy paper
- Heavy paper, cover paper, and cardstock
- Laser paper
- Preprinted forms and letterhead
- Recycled paper
- Special print media

Archival paper

Paper that is used for archiving must meet the same specifications as standard paper; however, the pH should be greater than 7.0. Some archival demands are more stringent than others, requiring a specific degree of alkalinity and chemical stability. Toner is chemically stable and should last as long as the paper does. Toner can be degraded by petroleum-based solvents or plasticizers, such as those found in vinyl folders. Avoid folding archival documents across printed areas or handling archival documents roughly. Discuss archival requirements with your paper supplier.

Bond paper or letterhead

Bond paper or letterhead is premium paper that is often watermarked, sometimes uses cotton fiber, and is available in a wide range of colors and finishes with matching envelopes. Many manufacturers now design these grades of paper with properties optimized for laser printing and advertise the paper as laser compatible or laser guaranteed. Some of the rougher surface finishes, such as cockle, laid, or linen, might require the special fuser modes that are available on some printer models in order to achieve adequate toner adhesion. For more information about your printer’s specifications, see the support documentation that came with your printer.

Coated paper

Clay- or other pigment-coated papers must be specifically designed for laser printers. The electrical properties must be controlled and the surface designed not to blister during fusing. The coating must not flake or shed particles that can contaminate the printer. Some chemically coated papers, such as carbonless paper, can cause swelling of rollers, damage to the paper path, or buildup on the fuser, and can produce undesirable emissions. These papers can result in unsatisfactory performance and poor reliability, and HP does not recommend their use.

Colored paper

You can use colored paper in your HP LaserJet printer if the paper meets the same specifications as standard paper (see “Guidelines for using paper” on page 9). Print quality from the HP color LaserJet printers is optimal when printing on white paper. You also can use an HP color LaserJet printer to print on colored paper that meets all of the specifications that are listed in this guide. However, colored paper can change the appearance of the printed colors. This is because HP color LaserJet printers create colors by printing a pattern of dots, overlaying and varying their spacing to produce various colors. When these colors are printed on colored media, the shade or color of the media will vary the shades of your printed colors. Because the printer cannot sense the color of the paper that you are using, it cannot adjust the output colors for colored paper. To manually adjust the output colors, see the support documentation for your printer.
Copier paper (plain paper)

Although copier paper is often referred to as "plain," the paper is optimized to work well with the electrophotographic process that is used in photocopiers and laser printers. Copier-grade paper commands the largest volume for printing and copying, and can be relatively inexpensive. However, keep in mind that the quality and consistency of paper can vary depending on the materials, processes, and controls that the manufacturer uses. These variations can significantly affect the quality of the printed output.

A very inexpensive paper might not save you money if it frequently causes multiple-sheet feeds or jams, or if it causes print-quality problems. If you are having these types of problems, you might want to consider using a different paper type or brand.

Embossed and debossed paper

Avoid heavily embossed or debossed papers to prevent multiple-sheet feeding that results from nesting. In addition, do not print closer than 15 mm (0.59 inch) from the embossment to prevent poor print quality and fusing (toner adhesion). The heat of the fuser can tend to flatten the embossed or debossed images.

Glossy paper

Glossy paper is a coated paper that is manufactured with a very smooth finish so that light is reflected off of the surface of the paper, rather than diffused.

Heavy paper, cover paper, and cardstock

Heavy paper generally refers to paper that is greater than 105 g/m² in weight (heavier than 28-lb bond) and cardstock generally refers to paper that is greater than 163 g/m² in weight (heavier than 60-lb cover, or 90-lb index). The heavier weight of these papers gives them more stiffness, which can degrade feeding reliability (typically as a result of poor pickup from the input tray). Using short-grain heavy paper in printers that feed in the portrait direction might help to avoid feed problems, because the paper is less stiff in the short-grain direction. Also, using the straightest paper path in your printer might also improve feeding reliability and print quality. Heavy paper and cardstock might also require higher fuser temperatures to adequately anchor the toner onto the surface.

CAUTION

Different HP LaserJet printer models and their input trays support various ranges of paper weights. Some models provide optimized settings that are available in the printer driver or at the control panel. Please see the support documentation that came with your HP LaserJet printer for specific information about its capabilities and settings.

Laser paper

Laser paper is another premium-quality paper grade that is typically characterized by very smooth and uniform surfaces, excellent formation, heavier bond weights of 24 lb or 32 lb, and very high brightness and whiteness. These optimized properties can enhance color and monochrome halftone reproductions by providing a very uniform substrate for image transfer and fusing. However, no standards exist for "laser paper," so evaluate a specific brand to make sure that it has the qualities and performance you want.
Preprinted forms and letterhead

To avoid problems when using preprinted forms, embossed paper, and letterhead paper, observe the following guidelines:

- Avoid using low-temperature inks (the kind used with some types of thermography).
- Use forms and letterhead paper that have been printed by offset lithography or engraving.
- Use forms that have been created with heat-resistant inks that will not melt, vaporize, or release undesirable emissions when heated to 205° C (401° F) for 0.1 second (0.2 second for HP color LaserJet printers). Typically, oxidation-set or oil-based inks meet this requirement.
- When the form is preprinted, be careful not to change the moisture content of the paper, and do not use materials that change the paper’s electrical or handling properties. Seal the forms in moisture-proof wrap to prevent moisture changes during storage.
- Avoid processing preprinted forms that have a finish or coating.
- Avoid using heavily embossed or raised-letterhead papers.
- Avoid papers that have heavily textured surfaces.
- Avoid using offset powders or other materials that prevent printed forms from sticking together.

Recycled paper

Recycled paper is a combination of unused fibers and pre- and post-consumer waste paper. Printed waste paper is usually washed to remove most of the inks and other contaminants. A recycled sheet of paper might contain dark specks or appear gray or dirty. Choose recycled paper that meets the same specifications as standard paper (see “Guidelines for using paper” on page 9) and that has a suitable appearance for your needs. Hewlett-Packard recommends that recycled paper contain no more than 5 percent groundwood. Hewlett-Packard has tested a variety of recycled copier papers on HP LaserJet printers and has found that they perform similarly to virgin-fiber grades.

Special print media

Paper that undergoes converting processes before it is used in your laser printer must be properly designed and manufactured to ensure acceptable performance. Converting processes include preprinting, engraving, die-cutting, perforating, folding, gluing, embossing, and debossing. Because these processes use many different inks, materials, tools, and techniques, HP recommends that you make sure your converter or supplier knows that the media will be used in a laser printer. Ask for a guarantee of acceptable performance.

Media that has perforations or cutouts can be printed successfully on your HP LaserJet printer. However, such media must be properly designed and manufactured to avoid feed or contamination problems and to avoid wear on the printer.

Cutout: The area where material has been removed by punching or die-cutting. Cutouts can interact with paper-path sensors or can result in contamination from toner if printing is too close to a cutout location.

Perforations: A series of holes or slits in media that provide a controlled tear for separating one portion of the sheet from another. Hewlett-Packard recommends that micro-perfs be used, because they provide better strength and reduce nesting, debris, and dusting.
The following guidelines should be considered when working with a knowledgeable vendor to develop media that will have perforations or die-cuts:

- So that edge trimmings will not scratch the photosensitive drum, punch cutouts and perforations from the side to be printed.
- Round all corners of a cutout to prevent snagging or, in the case of labels, peeling.
- Ensure that die-cutting of labels does not penetrate the liner sheet.
- Ensure that cutouts are not made at a position where paper-path sensors are located.
- Some printers do not support printing closer than 10 mm (0.4 inch) to a cutout edge or perforation in order to avoid toner contamination. For more information about your printer’s specifications, see the support documentation that came with your printer.
- All cuts should be clean (no burrs) and free of edge rollover to prevent nesting, poor feeding, contamination, or wear on the printer.
- Orient perforations in the direction of paper feeding to minimize tenting or feeding problems from reduced stiffness.
- Do not run perforations closer than 2 mm (0.08 inch) from the paper edge or 25 mm (1 inch) from the leading edge, or jamming and feeding problems can result.

**Guidelines for using paper**

Use conventional white copier paper for most printing. The paper should be of high quality and free of the following defects:

- cuts
- tears
- grease spots
- loose particles
- dust
- wrinkles and voids
- curled or bent edges

**CAUTION**

Avoid using extremely heavy or light paper. Use paper that is within your printer’s specified basis-weight range, as shown in the support documentation that came with your printer.

The following table summarizes the guidelines that provide the best performance when using paper.

**Note**

The specifications that are listed in this table generally apply to all HP LaserJet printers. See the support documentation that came with your printer for product-specific information.
## Property Specifications

<table>
<thead>
<tr>
<th>Property</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis weight</td>
<td>64 g/m² to 105 g/m² (17 lb to 28 lb). See the support documentation that came with your printer for specific information.</td>
</tr>
<tr>
<td>Caliper</td>
<td>0.09 mm to 0.17 mm (3.5 mil to 6.5 mil). See the support documentation that came with your printer for specific information.</td>
</tr>
<tr>
<td>Minimum stiffness</td>
<td>1.2 minimum (Taber) machine direction. 0.8 minimum (Taber) cross direction.</td>
</tr>
<tr>
<td>Grain</td>
<td>Portrait feeding: long grain up to 135 g/m² (36 lb); short grain for weights greater than 135 g/m². Landscape feeding: long grain.</td>
</tr>
<tr>
<td>Electrical surface resistivity</td>
<td>$10^9$ to $10^{13}$ ohms/square.</td>
</tr>
<tr>
<td>Electrical volume resistivity</td>
<td>$10^9$ to $10^{14}$ ohms - cm.</td>
</tr>
<tr>
<td>Surface roughness</td>
<td>100 to 190 Sheffield optimal; Up to 350 Sheffield extended (fusing or feeding performance can be degraded at outer ranges).</td>
</tr>
<tr>
<td>Fusing compatibility</td>
<td>Must not scorch, melt, ignite, offset materials, or release undesirable emissions when heated to 205°C (401°F) for 0.1 second (0.2 second for HP color LaserJet printers).</td>
</tr>
<tr>
<td>Furnish (composition)</td>
<td>100 percent chemical pulp and/or cotton content; recycled paper with up to 5 percent groundwood can be used.</td>
</tr>
<tr>
<td>Dimensional accuracy</td>
<td>Cut sheet within ±0.80 mm (±0.03 inch) of nominal.</td>
</tr>
<tr>
<td>Cut edge quality</td>
<td>Cuts must be smooth and clean with no fray or edge roll.</td>
</tr>
<tr>
<td>Curl</td>
<td>Must lie flat within 5 mm (0.2 inch).</td>
</tr>
<tr>
<td>Moisture content</td>
<td>4 percent to 6 percent by weight.</td>
</tr>
<tr>
<td>Packaging</td>
<td>Moisture-proof ream wrap.</td>
</tr>
<tr>
<td>Wax pick</td>
<td>12 minimum (Dennison).</td>
</tr>
</tbody>
</table>
Using envelopes

CAUTION Early models of the HP color LaserJet printer and HP color LaserJet 5 printers do not support envelopes. Printing on envelopes can damage the printer. See the user guide that came with your printer for detailed instructions about printing on envelopes.

Most HP LaserJet printers can print on many sizes and styles of envelopes by using the manual feed feature, an optional envelope tray, an optional envelope feeder, or another tray. Whichever input method you use, envelopes should meet all of the specifications that are discussed in this document. Your envelope vendor should provide you with a satisfactory envelope that complies with the specifications listed in “Guidelines for using envelopes” on page 13. However, inconsistencies in folds or other process-control problems can result in some envelopes feeding well and others jamming. Purchase envelopes that have the quality and consistency that your printer requires.

Note Envelopes can meet the general specifications listed in “Guidelines for using envelopes” on page 13 and still not print satisfactorily because of the printing environment or other variables over which HP has no control.

CAUTION Envelopes containing windows, clasps, or snaps can cause severe damage to the printer. See the support documentation for your printer before using envelopes in your HP LaserJet printer.

Envelope construction

Because of their construction, some envelopes do not feed through the printer dependably. Observe the following guidelines when purchasing and using envelopes:

- Make sure that the envelope’s leading edge, which enters the printer first, is straight, with a sharp, well-creased fold that has no more than two thicknesses of paper. Envelopes that exceed 90-g/m² (24-lb) basis weight can cause jamming.
- Avoid using flimsy envelopes that have thick or curved leading edges; they will not feed reliably.
- Envelopes should lie flat and should not be wrinkled, nicked, or otherwise damaged.
- Avoid envelopes that have baggy construction; they might wrinkle while passing through the printer’s fuser area.
- Make sure that the adhesive labels and all other materials used on envelopes will not scorch, melt, offset, or release undesirable emissions when heated to 205° C (401° F) for 0.1 second (0.2 second for HP color LaserJet printers).
- Avoid using envelopes that have encapsulated adhesives that do not require moistening but instead use pressure for sealing.
- Do not use envelopes that have clasps, snaps, tie strings, transparent windows, holes, perforations, or cutouts.
- Do not use envelopes that have any adhesive surfaces exposed to the printer.
- Use of envelopes that have woven or smooth finishes is recommended to ensure good toner adhesion.
Many envelopes will feed through your HP LaserJet printer without problems. However, some envelope constructions (as shown in the following figure) might not feed reliably. Problems can occur when the envelopes are folded more tightly than normal, which creates a thick leading edge near a corner. Inconsistencies in folding during manufacturing can cause some envelopes to feed well and others to jam. Purchase envelopes that have the quality and consistency that you require.

Summary of HP envelope testing

Hewlett-Packard tests many types of envelopes to determine which ones print acceptably in an HP LaserJet printer. Some of the test results are listed here.

- Commercial or Official envelopes (also called Business or Regular), which have diagonal seams and standard gummed flaps, performed the most reliably.
- Envelopes that have double-sided seam construction, which creates vertical seams at both ends of the envelope instead of diagonal seams, tend to be more flimsy than diagonal-seam envelopes. Double-sided seam envelopes tend to jam or wrinkle unless the edges are thin and sharply creased. However, a variety of double-sided seam envelopes have performed acceptably during testing.
- Envelopes that have a peel-off adhesive strip, or that have more than one flap that folds over for sealing, must use adhesives compatible with the heat and pressure of the printer’s fusing process. Many varieties of this type of envelope performed satisfactorily in HP testing; however, the extra flaps and strips can result in increased jamming or wrinkling.
- Generally, feeding problems increase with envelope size. Larger envelope sizes (C5, B5) cannot have a basis weight greater than 105 g/m² (28 lb).
- Rougher finishes such as laid, linen, or cockle can result in poor fusing.
- The multiple layers in envelopes construction might result in a noticeable background effect (small toner particles scattered in the non-imaged areas). You can reduce this effect by increasing the toner density setting on your printer.
Guidelines for using envelopes

The following table summarizes the envelope specifications that provide the best performance. Envelopes should meet the specifications for paper unless otherwise indicated.

**Note**

The specifications listed in this section generally apply to all HP LaserJet printers. See the support documentation that came with your printer for product-specific information.

<table>
<thead>
<tr>
<th>Property</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Basis weight</strong></td>
<td>64 g/m² to 105 g/m² (17 lb to 28 lb). See the support documentation that came with your printer for specific information.</td>
</tr>
<tr>
<td><strong>Caliper</strong></td>
<td>0.09 mm to 0.14 mm (3.6 mil to 5.5 mil) for a single-layer thickness.</td>
</tr>
<tr>
<td><strong>Surface roughness</strong></td>
<td>100 to 200 Sheffield.</td>
</tr>
<tr>
<td><strong>Fusing compatibility</strong></td>
<td>All inks, adhesives, and other materials that are used in the envelope construction must be compatible with the heat and pressure of the fusing process. Materials must not scorch, melt, ignite, offset materials, or release undesirable emissions when heated to 205°C (401°F) for 0.1 second (0.2 second for HP color LaserJet printers).</td>
</tr>
<tr>
<td><strong>Dimensional accuracy and construction quality</strong></td>
<td>Envelopes must be folded within ±1 mm (±0.04 inch) of nominal size and have no more than two thickness of paper anywhere along the leading edge. All folds must be sharply creased and construction must be tight (not baggy) to avoid wrinkling. Envelopes must not be stuck together from excess seam adhesive. The envelope flap must lie flat (within 1.5 mm [0.059 inch] over the width where the adhesive is applied).</td>
</tr>
<tr>
<td><strong>Curl</strong></td>
<td>Envelopes must lie flat, with no more than 6 mm (0.25 inch) curl across the entire surface.</td>
</tr>
<tr>
<td><strong>Moisture content</strong></td>
<td>4 percent to 6 percent by weight.</td>
</tr>
<tr>
<td><strong>Grain</strong></td>
<td>Different types of envelope construction might require different grain orientations for best performance, which is left to the discretion of the converter. For more information, see the support documentation that came with your printer.</td>
</tr>
<tr>
<td><strong>Packaging</strong></td>
<td>Protective box to prevent edge damage and maintain flatness.</td>
</tr>
</tbody>
</table>
Using labels

Labels are a type of multiple-layer media that typically consists of a face sheet (the printable surface), pressure-sensitive adhesive, and a liner (a carrier sheet coated with a release agent). Labels to be used in your HP LaserJet printer must be specifically designed for laser printers. If labels other than those compatible with laser printers are used, a significant risk exists for labels peeling or for adhesive contamination that can severely damage your printer. All materials in laser label stock must be compatible with the heat and pressure of the fusing process, and must not melt or release undesirable emissions when heated to 205° C (401° F) for 0.1 second (0.2 second for HP color LaserJet printers).

CAUTION

Not all HP color LaserJet printers support printing on labels. Please see the support documentation that came with your product to determine if your product supports labels. Consider the information in this section when selecting label stock.

Guidelines for using labels

The following table summarizes the adhesive-label specifications that provide the best performance. Labels should meet the specifications for paper unless otherwise indicated.

Note

The specifications listed in this section generally apply to all HP LaserJet printers. See the support documentation that came with your printer for product-specific information.
<table>
<thead>
<tr>
<th>Property</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesives</td>
<td>Adhesives must not be on any external surfaces of the label before, during, or after printing. Label construction, adhesive release strength, and appropriate die-cutting must prevent labels from peeling off during printing. Different adhesives can provide removable, permanent, or semi-permanent fixing of the face sheet onto the item being labeled. Generally, acrylic-based adhesives are preferred for laser printing because they can be applied in very thin layers to prevent oozing and contamination, and can be made compatible with the heat and pressure of fusing. Improved processes are being developed to minimize adhesive contamination, such as zone coating or stripped matrix. Zone coating recesses the adhesive around the border of a die-cut, and stripped matrix prevents adhesive from oozing between the die-cut labels. The adhesive and liner must provide adequate release strength so that labels will not peel off during printing.</td>
</tr>
<tr>
<td>Caliper</td>
<td>The caliper must not exceed 0.23 mm (9.0 mils).</td>
</tr>
<tr>
<td>Face sheet</td>
<td>The face sheet is the printable surface on a sheet of adhesive labels and can be made from different materials, including paper, polyester, and vinyl. It is common for a face sheet to be die-cut so that individual shapes can be removed after printing. Polyester and vinyl labels require a topcoat to provide the proper electrical and toner adhesion properties. It is important to purchase labels from a knowledgeable converter who is familiar with these processes and laser printing.</td>
</tr>
<tr>
<td>Fusing compatibility</td>
<td>All inks, adhesives, and other materials that are used in the label construction must be compatible with the heat and pressure of the fusing process. Materials must not scorch, melt, ignite, offset materials, or release undesirable emissions when heated to 205°C (401°F) for 0.1 second (0.2 second for HP color LaserJet printers).</td>
</tr>
<tr>
<td>Liner</td>
<td>The liner is the carrier sheet for the label material. The liner must provide stability for the reliable pickup and transport of the label stock through the printer.</td>
</tr>
<tr>
<td>Packaging</td>
<td>The labels should be delivered in moisture-proof wrap to preserve their properties.</td>
</tr>
<tr>
<td>Shelf life</td>
<td>The labels should have a minimum shelf life of one year, when stored at 23°C (73°F) and 50 percent relative humidity.</td>
</tr>
</tbody>
</table>

**Recommendations**

- Regularly inspect your labels after printing for any indication that the label edges are lifting or that adhesive contamination is occurring on the print surface. If either of these problems is observed, HP recommends that you discontinue use of that box or lot-number of labels and discuss the problem with your label supplier.

- If many sheets of labels are being continuously run, periodically run several sheets of paper through the printer to clean any contamination or label-stock adhesive that might have deposited.

**CAUTION** Make sure to run full sheets of labels. Reprinting unused portions can increase the risk of the labels peeling and the occurrence of adhesive contamination.
Using overhead transparencies

Overhead transparency film must be designed specifically for use with laser printers. Photocopy transparency film might not be compatible with laser printers because of higher temperature and stiffness requirements. Color laser printers also require different film from that used in monochrome printers to create proper color reproduction and accommodate fusing needs.

Overhead transparency film is very smooth and must have a topcoat to provide the proper electrical and toner adhesion properties. A transparency that is made of incompatible material or that is too thin can easily melt in or wrap around the fuser and damage your printer. The thickness requirement for monochrome overhead transparency film is 0.10 to 0.11 mm (4.0 to 4.4 mils) and for color overhead transparency film is 0.12 to 0.13 mm (4.8 to 5.2 mils).

Overhead transparency materials must be compatible with the heat and pressure of the fusing process. Materials must not discolor, offset, or release undesirable emissions when heated to 205°C (401°F) for 0.1 second (0.4 second for HP color LaserJet printers). See your HP LaserJet printer user guide for detailed instructions about using overhead transparencies.

See “Ordering HP print media” on page 35 for information about ordering HP transparencies.

CAUTION
Not all HP color LaserJet printers support printing on transparencies. Please see the support documentation that came with your product to determine if your product supports transparencies.

Guidelines for using overhead transparencies

The following table summarizes the overhead transparency specifications that provide the best performance.

CAUTION
To prevent jamming or poor-quality output, HP recommends using monochrome transparencies with HP LaserJet monochrome printers and color transparencies with HP color LaserJet printers.

Note
The specifications listed in this section generally apply to all HP LaserJet printers; see the support documentation that came with your printer for product-specific information.

<table>
<thead>
<tr>
<th>Property</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caliper</td>
<td>0.12 mm to 0.13 mm (4.8 mils to 5.2 mils) for HP color LaserJet printers.</td>
</tr>
<tr>
<td></td>
<td>0.10 mm to 0.11 mm (4.0 mils to 4.4 mils) for HP monochrome LaserJet printers.</td>
</tr>
<tr>
<td>Electrical surface resistivity</td>
<td>$10^{10}$ to $10^{13}$ ohms/square.</td>
</tr>
<tr>
<td>Fusing compatibility</td>
<td>Overhead transparency materials must be compatible with the heat and pressure of the fusing process. Materials must not discolor, melt, offset, or release undesirable emissions when heated to 205°C (401°F) for 0.1 second (0.4 second for HP color LaserJet printers).</td>
</tr>
</tbody>
</table>
Printing on both sides of the paper

Two-sided printing, also known as duplex printing or duplexing, can be either an automatic or a manual process.

Note

The print quality for color duplex printing has been optimized for 90-g/m² (24-lb) and heavier paper.

Automatic duplexing

Automatic duplexing requires an HP LaserJet printer that is designed especially for duplex printing. See the support documentation for your printer model or duplex accessory for information about supported paper. (For example, when duplexing on the HP color LaserJet 8500 printer, 90 g/m² to 105 g/m² [24 lb to 28 lb] media is recommended.)

CAUTION

Duplexing on adhesive labels, envelopes, or overhead transparencies can damage your printer.

Manual duplexing

Manual duplex printing, in which sheets that already have been printed are fed again into the printer, requires operator intervention. (See the software application support documentation for more information.) Hewlett-Packard recommends manually refeeding sheets only through the manual feed slot, the multipurpose (MP) tray, or tray 1. Do not refeed sheets from the paper cassette trays. Using the paper cassette trays can cause jams, misfeeds, and print-quality problems.

Preparing laser-printed mailings

Laser printing technology is being used by more and more postal customers to prepare mailings. Laser printers produce high-quality images; offer advantages in speed, flexibility, and size; and are the printers of choice for smaller companies and in-home businesses.

Unlike offset printers, in which the ink is absorbed into the paper, laser printers use heat to fuse a plastic toner to the surface of the paper. Because of this difference, HP recommends that you use the following guidelines to produce quality laser-printed products for mailings:

1. Ensure that the manufacturer’s recommended toner is used for the laser printer. Many aftermarket toners do not comply with the manufacturer’s original specifications. Hewlett-Packard cannot predict or guarantee the performance of non-HP consumables in HP products.

2. Paper selection is critical. Several manufacturers have papers that are specifically formulated for their printers. For specific properties that are required for the paper used for laser-printed mailings, please contact your United States Postal Service business office.

3. Avoid preparing laser-printed sheets as folded self-mailers. The laser-printed sheets should be mailed in envelopes. The envelopes should have an edge or end seam and a minimum basis weight of 24 lb (90 g/m²).
4 Print bar codes in advance and presort all envelopes. Meter the envelopes or use precanceled stamps. (In addition to helping in the overall performance of the laser-printed document, bar coding and presorting can offer advantageous postal charges. In the United States, please contact your United States Postal Service business office to find out more about this.)

5 Avoid text-on-text contact. This can be avoided by printing on only one side, and then folding the document with the fold to the outside. Text then contacts only the inside of the envelope or the back side of the printed sheets. If text-on-text contact cannot be avoided, use a thin insert such as onion skin to separate the printed sheets for best results.

6 Ensure that all mailpieces are placed in a tray and presented at the retail window or, in the United States, at the Bulk Mail Acceptance Unit (BMAU). *Avoid placing laser-printed mail into collection boxes or chutes.*
Shipping and storing print media

The performance of HP LaserJet printers depends on the condition of the print media that is used. This section contains recommendations for shipping and storing media, and provides information about environmental effects on media.

Shipping media

When you are shipping print media through different environments, use plastic wrap to wrap all cartons on the shipping pallet. When you are shipping media across bodies of water, also wrap individual cartons. Packaging must protect the media from physical damage.

Storing media

Follow these guidelines when stacking and storing print media:

- **Do not** store cartons or reams directly on the floor. Place cartons on a pallet or on shelves.
- **Do not** store individual reams in a manner that will result in curling or warping.
- Rewrap partially used packages of media before storing them.
- **Do not** stack more than six cartons on top of each other.
- Stack each carton squarely on top of the one underneath.
- Stack each carton upright.
- **Do not** place anything on top of media, regardless of whether the paper is packaged or unpackaged.
- Store envelopes in a protective box to avoid damaging the envelope edges.
- Keep stored media away from extremes in temperature and humidity.
- **Do not** store printed documents in vinyl folders (which can contain plasticizers) and do not expose the documents to petroleum-based solvents.

Environmental considerations

HP LaserJet printers are designed to operate in a wide range of environmental conditions. For best performance, store and use media at 20° to 24° C (68° to 75° F), with a relative humidity of 45 to 55 percent. Follow these guidelines when media is used in an environment outside those temperature and humidity ranges:

- **Do not** expose the media to extremes in humidity or temperature. If media is left unwrapped or in the printer input tray, extreme changes in the environment will cause the media to assume unwanted characteristics.
- In the case of extreme humidity, keep paper and envelopes tightly wrapped in plastic.

If a significant temperature difference exists between the media storage area and the printer's operating environment, allow the media time to adjust to the temperature in the printer's operating environment before unwrapping it. The greater the temperature difference and the greater the amount of media to acclimate, the longer this time period should be. Allow one day for every 10° C (20° F) difference in temperature between the storage environment and the printing environment.
3 Troubleshooting

Print-quality and media-handling problems usually result from print media that does not meet the specifications that are described in this guide, or print media that has been stored improperly or is not in good condition.

The following sections further explain the possible causes of and solutions to print-media problems.

Troubleshooting checklist

Ask the following questions to determine if the print media is causing print-quality problems:

- Does your media meet the specifications outlined in this document? (See “Types of print media to avoid” on page 22 and “Guidelines for using media” on page 3.)
- Is the media in good condition? Is the media bent or wrinkled?
- Are you using the printing procedures that are described in the printer user guide?
- Are you observing correct practices when handling and loading media? (See the support documentation for your printer for guidelines to load media.)
- Are your print-quality problems isolated to a specific type of media?
- Did you check the following aspects of the environment in which the printer operates or in which the print media is stored? See “Environmental considerations” on page 19.
  - temperature
  - humidity
  - cleanliness
Basic troubleshooting

If you cannot determine the cause of your print defects by using information from the troubleshooting checklist, try the following procedures:

1 Inspect the print media for obvious defects, such as torn sheets, contamination from glue, or ragged cut edges.

1 Use print media from another lot or from a different manufacturer.

2 Turn the paper stack over in the input tray, or turn it 180° in the tray. Do both, if necessary.

3 If you have a print-quality problem that is related to envelopes, print a sheet of paper to determine if the problem is caused by the variable thickness of your envelope.
   • If the print quality of the single-sheet sample is good, re-examine your envelope and see “Envelope construction” on page 11 for more information.
   • If the print quality of the single-sheet sample is poor, you might have a printer problem. See the support documentation for your printer to see further troubleshooting information.

4 Read the remainder of this troubleshooting section for further troubleshooting information, perform the maintenance procedures that are recommended in your printer user guide, or see the troubleshooting section in your printer user guide.

Types of print media to avoid

The following characteristics can affect the performance of your HP LaserJet printer unless the paper or other print media you are using is specifically designed to work with your HP LaserJet printer:

- Print media, media coatings, dyes, or inks that contain materials that melt, vaporize, offset, discolor, or release undesirable emissions when exposed to 205° C (401 ° F) for 0.1 second (0.2 second for HP color LaserJet printers).
- Print media that is very rough, highly textured, or heavily embossed.
- Multipart forms.
- Print media that offsets or discolors.
- Print media that is damaged, curled, wrinkled, or irregularly shaped.
- Print media that has not been stored or shipped properly. (See “Shipping media” on page 19 and “Storing media” on page 19.)
- Overhead transparency film that produces undesirable emissions or melts when exposed to a fusing temperature of 205° C (401° F) for 0.1 second (0.4 second for HP color LaserJet printers).
- Envelopes that have encapsulated adhesives that do not require moistening but instead use pressure for sealing.
- Envelopes that have clasps, snaps, tie strings, windows, or synthetic materials. These materials can severely damage the printer.
- Envelopes that are not square, straight, or constructed correctly. (See “Envelope construction” on page 11.)
- Envelopes of a basis weight less than 60 g/m² (16 lb) or greater than 105 g/m² (28 lb).
- Envelopes that have baggy construction or folds that are not sharply creased.
Paper problems

This section provides information about conditions that can indicate paper problems. These conditions include a high occurrence of jams, a high number of multiple-sheet feeds, and post-image curl.

**CAUTION** Do not reuse jammed paper. Doing so can damage the printer.

**Frequent paper jams**

The following table lists possible causes of frequent paper jams and suggested actions.

**Note** To recover from a paper jam, follow the directions that are listed in your HP LaserJet printer user guide.

<table>
<thead>
<tr>
<th>Cause</th>
<th>Action(s)</th>
</tr>
</thead>
</table>
| Paper is too stiff or heavy. Heavy or stiff paper might not be able to negotiate the paper path or be picked up from the input tray. | • Make sure that the paper does not exceed the basis weight that is specified in the user documentation for your printer.  
• Manually feed the paper into the printer.  
• Use the correct output bin, as shown in your printer user guide.  
• Use a lighter-weight paper. |
| Paper is too smooth or too rough. | • Change the paper type or manually feed the paper into the printer. See your printer user guide for the correct output tray selection. |
| Paper is not cut to specification. This can cause poor print alignment, misstacking, improper fit in the input tray, or problems with the paper sensors. | • Change the paper type or try another ream of paper. |
| Paper is too light or too flimsy. | • Make sure that the paper meets the specifications that are listed for basis weight in “Guidelines for using paper” on page 9. |
| Paper guides in the tray are set incorrectly in the printer. | • Make sure that all of the paper guides have been set correctly. See the user documentation for your printer for more information. |
| Paper is too dry or too moist. | • Make sure that the paper is not near a window or a heat or air vent.  
• Replace the paper in the unit with paper from a newly opened ream. |
| Paper might contain higher filler levels of talc and calcium carbonate. If the talc or calcium carbonate are not well-bound to the paper fibers, they can build up in the paper path and cause frequent paper jams. | • Try a different paper brand.  
• Perform the printer cleaning procedures that are appropriate for your printer. For most HP LaserJet printers you can use a cleaning page to remove build-up in the fuser. For more information, see the documentation that came with your printer. |
Frequent multiple-sheet feeds

The following table lists possible causes of frequent multiple-sheet feeds and suggested actions.

<table>
<thead>
<tr>
<th>Cause</th>
<th>Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper is added in small amounts to the input tray.</td>
<td>● Add only large amounts of paper to the input tray, and avoid mixing paper types in the input tray.</td>
</tr>
<tr>
<td>Paper is too dry or is not moist enough. (Insufficient moisture makes</td>
<td>● Try another ream of paper.</td>
</tr>
<tr>
<td>paper less conductive and creates static buildup.)</td>
<td>● Change the paper type.</td>
</tr>
<tr>
<td></td>
<td>● Make sure that the paper is properly prepared. See “Preparing print media for use” on page 4.</td>
</tr>
<tr>
<td>Paper is too light or too thin.</td>
<td>● Change the paper type.</td>
</tr>
<tr>
<td>Paper is too smooth or too rough. Surfaces tend to interlock or stick</td>
<td>● Change the paper type.</td>
</tr>
<tr>
<td>together.</td>
<td></td>
</tr>
<tr>
<td>Paper is embossed or has raised letterhead.</td>
<td>● Change the paper type.</td>
</tr>
<tr>
<td>Paper guides in the trays are set incorrectly.</td>
<td>● Make sure that all of the paper guides have been set correctly. See the user documentation for your printer for more information.</td>
</tr>
<tr>
<td>Paper sticks together at the edges (edgeweld). Edgeweld is caused by</td>
<td>● Flex the stack in both directions to &quot;break&quot; any locked edges.</td>
</tr>
<tr>
<td>the use of dull cutting blades during the manufacturing process.</td>
<td>● Try a different ream of paper.</td>
</tr>
<tr>
<td></td>
<td>● Try a paper from a different paper manufacturer.</td>
</tr>
</tbody>
</table>
Reducing post-image curl

When an HP LaserJet printer prints a sheet of paper, the sheet can develop a curvature that is called post-image curl. Generally, the higher the moisture content of the paper, the greater the curl.

Both the paper and the printer affect the amount of post-image curl. In the papermaking process, stresses that can cause curl are a result of the paper manufacturing process, so different papers will have differing amounts of post-image curl. In the printing process, the paper is subjected to the heat and pressure of the fuser as well as to the contours of the paper path.

<table>
<thead>
<tr>
<th>Cause</th>
<th>Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper is too moist, resulting in waviness or curl.</td>
<td>• Print to another output bin, for example, the face-up output bin. (This option is not available with some printers.)</td>
</tr>
<tr>
<td></td>
<td>• Change to a different type or brand of paper.</td>
</tr>
<tr>
<td></td>
<td>• You might need to acclimate the paper to your environment to diminish differences in heat and moisture. (See “Preparing print media for use” on page 4.)</td>
</tr>
<tr>
<td></td>
<td>• Follow the storage and handling specifications in this document. (See “Shipping and storing print media” on page 19.)</td>
</tr>
<tr>
<td></td>
<td>• On HP color LaserJet printers, reduce toner coverage by using dither patterns rather than solid fill.</td>
</tr>
<tr>
<td>Paper orientation (direction in which the paper is fed into the printer) is incorrect, resulting in excessive curl.</td>
<td>• Turn the paper stack over or turn it around in the input tray to reverse the direction of the paper.</td>
</tr>
<tr>
<td></td>
<td>• The grain of the paper can affect the curl of the paper. Therefore, if you are feeding the paper in landscape mode (horizontally) and are experiencing curl, try feeding the paper in portrait mode (vertically), if possible.</td>
</tr>
<tr>
<td>Fuser mode is set improperly in the printer driver for the paper that is being used.</td>
<td>• If possible, set the fuser mode to a lower setting. For more information about setting the fuser mode, see the support documentation that came with your printer.</td>
</tr>
</tbody>
</table>
Envelope problems

High rates of jams, gray areas printing on envelopes, or wrinkling can indicate problems with envelopes.

Frequent envelope jams

Overfilling the envelope tray and misadjusting its guides are the most common causes of jams. However, if the envelope tray is properly loaded, the envelopes might be causing the problems.

To recover from an envelope jam, follow the directions that are listed in your HP LaserJet printer user guide.

**CAUTION** Do not reuse jammed envelopes. Doing so can damage the printer.

<table>
<thead>
<tr>
<th>Cause</th>
<th>Action(s)</th>
</tr>
</thead>
</table>
| Envelopes are poorly manufactured.         | • Make sure that the leading edge is straight, and has a sharp, well-creased fold. The envelope must not have more than two thicknesses of paper along any leading edge. The folded layers of paper should come to a point at the leading-edge corners. (See the figure in “Envelope construction” on page 11.)  
• Purchase envelopes that are manufactured correctly, or run the side of a pen or pencil over the envelope edges to flatten them. |
| Envelopes are not creased sufficiently to have sharp edges. | • Crease the leading edge of the envelope with the side of a pen or pencil, or change to a different type or brand. |
| Envelopes are wrinkled, bent, or curled.    | • Make sure that the envelope’s leading edge, which enters the printer first, is straight, and that it has a sharp, well-creased fold that has no more than two thicknesses of paper. |
| Envelopes are too stiff or heavy. Stiff or heavy envelopes cannot negotiate the paper path or be picked up from the envelope tray. | • Use a lighter-weight envelope. Do not exceed the basis weight of 105 g/m² (28 lb).  
• Use the printer’s most direct (straight-through) paper path. |
| Envelopes are too smooth (do not have enough friction for transport) or too rough | • Change to a different type of envelope. |
| Envelope is inserted too far into the manual feed slot. | • Insert the envelope only until you feel a slight resistance. |
Gray areas on envelopes

<table>
<thead>
<tr>
<th>Cause</th>
<th>Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envelope has seams or multiple layers.</td>
<td>● Avoid printing over seams or other multiple-layer areas.</td>
</tr>
<tr>
<td>The toner density setting is too light.</td>
<td>● Reduce background (gray shading in non-imaged areas) by adjusting the toner density setting to a darker setting. See the documentation that came with your printer.</td>
</tr>
</tbody>
</table>

Wrinkling

Wrinkles that form in envelopes after printing usually are caused by the following envelope conditions:

<table>
<thead>
<tr>
<th>Cause</th>
<th>Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loose envelope construction.</td>
<td>● Try different envelopes that are better constructed. See “Envelope construction” on page 11 for characteristics of good envelope construction.</td>
</tr>
<tr>
<td>Folds are not sharply creased.</td>
<td>● Try different envelopes that are better constructed. See “Envelope construction” on page 11 for characteristics of good envelope construction.</td>
</tr>
<tr>
<td>Low-weight/low-strength paper used in the envelope construction.</td>
<td>● Try different envelopes that are better constructed. See “Envelope construction” on page 11 for characteristics of good envelope construction.</td>
</tr>
<tr>
<td>High moisture content.</td>
<td>● You might need to acclimate the envelope from the storage environment to your environment in order to diminish differences in heat and moisture. (See “Preparing print media for use” on page 4.)</td>
</tr>
</tbody>
</table>
Print-quality problems

The following sections discuss print-quality problems that might be caused by print media.

**Background toner particles**

If the amount of background particles becomes unacceptable, the following procedures might help to clear the condition:

- Increase the toner density setting. This decreases the amount of background particles.
- Change the paper to a lighter basis weight.
- Check the printer’s environment. Very dry (low humidity) conditions can increase the amount of background particles.

**Dropouts**

If faded-out areas or character voids (partial print) occur randomly on the page:

- The moisture content of the paper might be uneven, or the paper might have moist spots on its surface as a result of environmental humidity. Store the paper in a moisture-proof container. Try removing the top few sheets of paper from the paper tray or use paper from a different source (such as another ream), or try a different brand of paper.
- The paper lot is bad. The manufacturing processes can cause some areas to reject toner. Try a different kind or brand of paper.

**Improperly formed or wavy characters**

If characters are improperly formed or if the printer is producing hollow images, the paper stock might be too smooth. Try a different paper if characters are improperly formed.

**Toner smear**

- If toner smears appear on the leading edge of the paper, the paper stock might be too slick. Try a different paper if the toner is smearing on the paper.
- If toner is not fusing properly (and is smearing), try a higher fuser mode setting (if available). For more information, see the support documentation that came with your printer.

**Toner specks (background scatter)**

Toner specks are black dots that appear randomly on either side of the page. If the toner specks appear, the media might not meet the specifications for your printer (for example, the paper is too moist or too rough). For more information, see the support documentation that came with your printer.
U.S. paper grades

The U.S. paper-grading system has evolved through custom and usage, resulting in similar papers having differently stated weights. For example, a 24-lb bond paper is exactly the same weight as a 60-lb book paper, or a 60-lb text, or a 33-lb cover. This is because basis weight is defined as the weight of 500 sheets of paper cut to basic size. The basic size for bond, book/text, cover, index, bristol, and tag are all different, so the given weights for these paper grades can be different although the physical weight is virtually identical.

Common paper grades and basis weights

The following table helps clarify differences in weights among paper grades. Note the difference in basic size for each grade, which affects the weight of 500 sheets of that grade.

<table>
<thead>
<tr>
<th>Paper grade</th>
<th>Basic size</th>
<th>Basic area</th>
<th>Factor</th>
<th>Equivalent basis weights (example)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond</td>
<td>17 by 22 inches (432 by 559 mm)</td>
<td>374.0 sq. inches (.241 m²)</td>
<td>1.00</td>
<td>24-lb bond</td>
</tr>
<tr>
<td>Text</td>
<td>25 by 38 inches (635 by 965 mm)</td>
<td>950.0 sq. inches (.613 m²)</td>
<td>2.54</td>
<td>61-lb text</td>
</tr>
<tr>
<td>Book (coated or uncoated)</td>
<td>25 by 38 inches (635 by 965 mm)</td>
<td>950.0 sq. inches (.613 m²)</td>
<td>2.54</td>
<td>61-lb book</td>
</tr>
<tr>
<td>Cover</td>
<td>20 by 26 inches (508 by 660 mm)</td>
<td>520.0 sq. inches (.335 m²)</td>
<td>1.39</td>
<td>33-lb cover</td>
</tr>
<tr>
<td>Bristol</td>
<td>22.5 by 28.5 inches (571 by 724 mm)</td>
<td>641.25 sq. inches (.414 m²)</td>
<td>1.71</td>
<td>41-lb Bristol</td>
</tr>
<tr>
<td>Index</td>
<td>25.5 by 30.5 inches (648 by 775 mm)</td>
<td>777.75 sq. inches (.502 m²)</td>
<td>2.08</td>
<td>50-lb index</td>
</tr>
<tr>
<td>Tag</td>
<td>24 by 36 inches (610 by 910 mm)</td>
<td>864.0 sq. inches (.557 m²)</td>
<td>2.31</td>
<td>55-lb tag</td>
</tr>
<tr>
<td>Metric weight</td>
<td>39.37 by 39.37 inches (1000 by 1000 mm)</td>
<td>1550.0 sq. inches (1.0 m²)</td>
<td>3.76</td>
<td>90 g/m²</td>
</tr>
</tbody>
</table>
Weight equivalence table

The following table shows equivalent weights for different grades of paper. A **bolded** value indicates a commonly available standard weight for that grade.

---

**Note**

Text and book grades marked with an asterisk (*) actually calculate to 51, 61, 71, and 81 but are rounded to standard book/text weights of 50, 60, 70, and 80.

<table>
<thead>
<tr>
<th>Bond wt. (17 by 22 inches)</th>
<th>Text/Book wt. (25 by 38 inches)</th>
<th>Cover wt. (20 by 26 inches)</th>
<th>Bristol wt. (22.5 by 28.5 inches)</th>
<th>Index wt. (25.5 by 30.5 inches)</th>
<th>Tag wt. (24 by 36 inches)</th>
<th>Metric wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 lb</td>
<td>41 lb</td>
<td>22 lb</td>
<td>27 lb</td>
<td>33 lb</td>
<td>37 lb</td>
<td>60 g/m²</td>
</tr>
<tr>
<td>17 lb</td>
<td>43 lb</td>
<td>24 lb</td>
<td>29 lb</td>
<td>35 lb</td>
<td>39 lb</td>
<td>64 g/m²</td>
</tr>
<tr>
<td><strong>20 lb</strong></td>
<td><strong>50 lb</strong> *</td>
<td>28 lb</td>
<td>34 lb</td>
<td>42 lb</td>
<td>46 lb</td>
<td>75 g/m²</td>
</tr>
<tr>
<td>21 lb</td>
<td>54 lb</td>
<td>30 lb</td>
<td>36 lb</td>
<td>44 lb</td>
<td>49 lb</td>
<td>80 g/m²</td>
</tr>
<tr>
<td><strong>24 lb</strong></td>
<td><strong>60 lb</strong> *</td>
<td>33 lb</td>
<td>41 lb</td>
<td>50 lb</td>
<td>55 lb</td>
<td>90 g/m²</td>
</tr>
<tr>
<td>27 lb</td>
<td>68 lb</td>
<td>37 lb</td>
<td>45 lb</td>
<td>55 lb</td>
<td>61 lb</td>
<td>100 g/m²</td>
</tr>
<tr>
<td><strong>28 lb</strong></td>
<td><strong>70 lb</strong> *</td>
<td>39 lb</td>
<td>49 lb</td>
<td>58 lb</td>
<td>65 lb</td>
<td>105 g/m²</td>
</tr>
<tr>
<td>29 lb</td>
<td>74 lb</td>
<td>41 lb</td>
<td>50 lb</td>
<td>61 lb</td>
<td>68 lb</td>
<td>110 g/m²</td>
</tr>
<tr>
<td><strong>32 lb</strong></td>
<td><strong>80 lb</strong> *</td>
<td>44 lb</td>
<td>55 lb</td>
<td>67 lb</td>
<td>74 lb</td>
<td>120 g/m²</td>
</tr>
<tr>
<td>36 lb</td>
<td>90 lb</td>
<td>50 lb</td>
<td>62 lb</td>
<td>75 lb</td>
<td>83 lb</td>
<td>135 g/m²</td>
</tr>
<tr>
<td>39 lb</td>
<td><strong>100 lb</strong></td>
<td>55 lb</td>
<td><strong>67 lb</strong></td>
<td>82 lb</td>
<td>91 lb</td>
<td>148 g/m²</td>
</tr>
<tr>
<td>40 lb</td>
<td>101 lb</td>
<td>55 lb</td>
<td>68 lb</td>
<td>83 lb</td>
<td>92 lb</td>
<td>150 g/m²</td>
</tr>
<tr>
<td>43 lb</td>
<td>110 lb</td>
<td>55 lb</td>
<td>68 lb</td>
<td>83 lb</td>
<td>92 lb</td>
<td>150 g/m²</td>
</tr>
<tr>
<td>45 lb</td>
<td>115 lb</td>
<td>63 lb</td>
<td>77 lb</td>
<td>94 lb</td>
<td>104 lb</td>
<td>170 g/m²</td>
</tr>
<tr>
<td>47 lb</td>
<td>119 lb</td>
<td>65 lb</td>
<td>80 lb</td>
<td>97 lb</td>
<td>108 lb</td>
<td>176 g/m²</td>
</tr>
<tr>
<td>51 lb</td>
<td>128 lb</td>
<td>70 lb</td>
<td>86 lb</td>
<td>105 lb</td>
<td>117 lb</td>
<td>190 g/m²</td>
</tr>
<tr>
<td>53 lb</td>
<td>134 lb</td>
<td>74 lb</td>
<td>90 lb</td>
<td>110 lb</td>
<td>122 lb</td>
<td>199 g/m²</td>
</tr>
<tr>
<td>54 lb</td>
<td>137 lb</td>
<td>75 lb</td>
<td>93 lb</td>
<td>113 lb</td>
<td><strong>125 lb</strong></td>
<td>203 g/m²</td>
</tr>
<tr>
<td>58 lb</td>
<td>146 lb</td>
<td>80 lb</td>
<td>98 lb</td>
<td>120 lb</td>
<td>133 lb</td>
<td>216 g/m²</td>
</tr>
<tr>
<td>65 lb</td>
<td>165 lb</td>
<td>90 lb</td>
<td>111 lb</td>
<td>135 lb</td>
<td><strong>150 lb</strong></td>
<td>244 g/m²</td>
</tr>
<tr>
<td>66 lb</td>
<td>169 lb</td>
<td>92 lb</td>
<td>114 lb</td>
<td>138 lb</td>
<td>154 lb</td>
<td>250 g/m²</td>
</tr>
<tr>
<td>67 lb</td>
<td>171 lb</td>
<td>94 lb</td>
<td>115 lb</td>
<td><strong>140 lb</strong></td>
<td>155 lb</td>
<td>253 g/m²</td>
</tr>
<tr>
<td>70 lb</td>
<td>178 lb</td>
<td>98 lb</td>
<td><strong>120 lb</strong></td>
<td>146 lb</td>
<td>162 lb</td>
<td>264 g/m²</td>
</tr>
<tr>
<td>72 lb</td>
<td>183 lb</td>
<td><strong>100 lb</strong></td>
<td>123 lb</td>
<td>150 lb</td>
<td>166 lb</td>
<td>271 g/m²</td>
</tr>
</tbody>
</table>
Standard media sizes used in laser printers

The following sections list the English and metric dimensions of the most commonly used paper, envelope, and cardstock sizes. See the support documentation that came with your printer for specific information about the media that your HP LaserJet printer supports. Use only media that is supported.

### Paper

<table>
<thead>
<tr>
<th>Size</th>
<th>English dimension</th>
<th>Metric dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter</td>
<td>8.5 by 11.0 inches</td>
<td>215.9 by 279.4 mm</td>
</tr>
<tr>
<td>Legal</td>
<td>8.5 by 14.0 inches</td>
<td>215.9 by 355.6 mm</td>
</tr>
<tr>
<td>Folio/foolscap</td>
<td>8.50 by 13.00 inches</td>
<td>215.9 by 330.2 mm</td>
</tr>
<tr>
<td>Executive</td>
<td>7.25 by 10.50 inches</td>
<td>184.2 by 266.7 mm</td>
</tr>
<tr>
<td>Tabloid/ledger</td>
<td>11.0 by 17.0 inches</td>
<td>279.4 by 431.8 mm</td>
</tr>
<tr>
<td>Ledger full bleed</td>
<td>12.0 by 18.0 inches</td>
<td>304.8 by 457.2 mm</td>
</tr>
<tr>
<td>A3</td>
<td>11.69 by 16.54 inches</td>
<td>297 by 420 mm</td>
</tr>
<tr>
<td>RA3</td>
<td>12.01 by 16.93 inches</td>
<td>305 by 430 mm</td>
</tr>
<tr>
<td>A3 full bleed</td>
<td>12.28 by 17.32 inches</td>
<td>312 by 440 mm</td>
</tr>
<tr>
<td>A4</td>
<td>8.27 by 11.70 inches</td>
<td>210 by 297 mm</td>
</tr>
<tr>
<td>A5</td>
<td>5.83 by 8.27 inches</td>
<td>148 by 210 mm</td>
</tr>
<tr>
<td>B4 (JIS)</td>
<td>10.12 by 14.33 inches</td>
<td>257 by 364 mm</td>
</tr>
<tr>
<td>B4 (ISO)</td>
<td>9.84 by 13.90 inches</td>
<td>250 by 353 mm</td>
</tr>
<tr>
<td>B5 (JIS)</td>
<td>7.17 by 10.12 inches</td>
<td>182 by 257 mm</td>
</tr>
<tr>
<td>B5 (ISO)</td>
<td>6.93 by 9.84 inches</td>
<td>176 by 250 mm</td>
</tr>
<tr>
<td>8K</td>
<td>10.63 by 15.35 inches</td>
<td>270 by 390 mm</td>
</tr>
<tr>
<td>16K</td>
<td>7.68 by 10.63 inches</td>
<td>195 by 270 mm</td>
</tr>
<tr>
<td>32K</td>
<td>5.32 by 7.68 inches</td>
<td>135 by 195 mm</td>
</tr>
</tbody>
</table>
## Envelopes

<table>
<thead>
<tr>
<th>Size</th>
<th>English dimension</th>
<th>Metric dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. #6 3/4 (personal)</td>
<td>3.63 by 6.50 inches</td>
<td>92.1 by 465.1 mm</td>
</tr>
<tr>
<td>U.S. #8 5/8 (check)</td>
<td>3.63 by 8.63 inches</td>
<td>92.1 by 219.1 mm</td>
</tr>
<tr>
<td>U.S. #9</td>
<td>3.88 by 8.88 inches</td>
<td>98.4 by 225.4 mm</td>
</tr>
<tr>
<td>U.S. #10 (com10)</td>
<td>4.13 by 9.50 inches</td>
<td>104.9 by 241.3 mm</td>
</tr>
<tr>
<td>U.S. #11</td>
<td>4.50 by 10.38 inches</td>
<td>114.3 by 263.5 mm</td>
</tr>
<tr>
<td>U.S. #5 1/2 baronial</td>
<td>4.38 by 5.75 inches</td>
<td>111.1 by 146.1 mm</td>
</tr>
<tr>
<td>U.S. #6 baronial</td>
<td>4.75 by 6.50 inches</td>
<td>120.7 by 165.1 mm</td>
</tr>
<tr>
<td>U.S. #7 3/4 (Monarch)</td>
<td>3.88 by 7.50 inches</td>
<td>98.4 by 190.5 mm</td>
</tr>
<tr>
<td>U.S. A2 announcement</td>
<td>4.38 by 5.75 inches</td>
<td>111.1 by 146.1 mm</td>
</tr>
<tr>
<td>U.S. A6 announcement</td>
<td>4.75 by 6.50 inches</td>
<td>120.7 by 165.1 mm</td>
</tr>
<tr>
<td>ISO B5</td>
<td>6.93 by 9.84 inches</td>
<td>176 by 250 mm</td>
</tr>
<tr>
<td>ISO C5</td>
<td>6.38 by 9.02 inches</td>
<td>162 by 229 mm</td>
</tr>
<tr>
<td>ISO C5/6</td>
<td>4.49 by 9.02 inches</td>
<td>114 by 229 mm</td>
</tr>
<tr>
<td>ISO C6</td>
<td>4.49 by 6.38 inches</td>
<td>114 by 162 mm</td>
</tr>
<tr>
<td>ISO DL</td>
<td>4.33 by 8.66 inches</td>
<td>110 by 220 mm</td>
</tr>
</tbody>
</table>
Comparisons of paper smoothness

Smoothness is typically expressed in terms of Sheffield, Gurley, Bekk, or Bendtsen units. HP LaserJet printers generally require a smoothness of between 100 and 200 Sheffield.

The following figure compares the different types of smoothness.

<table>
<thead>
<tr>
<th>Sheffield (CC by 10^{-2}/MIN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>400</td>
</tr>
</tbody>
</table>

| Gurley S-P-S (3 PSI) (SEC/100 CC) |
|---|---|---|---|---|
| 60 | 70 | 80 | 90 | 100 |
| 70 | 80 | 90 | 100 | 150 |
| 80 | 90 | 100 | 150 | 200 |
| 90 | 100 | 150 | 200 | 300 |
| 100 | 150 | 200 | 300 | 400 |

| Bekk (SEC/10 CC) |
|---|---|---|---|---|
| 60 | 70 | 80 | 90 | 100 |
| 70 | 80 | 90 | 100 | 150 |
| 80 | 90 | 100 | 150 | 200 |
| 90 | 100 | 150 | 200 | 300 |
| 100 | 150 | 200 | 300 | 400 |

| Bendtsen (1 KG/CM^2) (CC/MIN) |
|---|---|---|---|---|
| 60 | 70 | 80 | 90 | 100 |
| 70 | 80 | 90 | 100 | 150 |
| 80 | 90 | 100 | 150 | 200 |
| 90 | 100 | 150 | 200 | 300 |
| 100 | 150 | 200 | 300 | 400 |
In the United States, you can purchase HP paper and transparencies through HP's website at [http://www.hpshopping.com](http://www.hpshopping.com) or by contacting your local reseller. To order outside of the U.S., please contact your local sales office.

**Laser paper**

**CAUTION** Not all HP LaserJet printers support printing on all of the print media that is listed in the following table. Please see the support documentation that came with your product to determine if your product supports a particular type of print media.

<table>
<thead>
<tr>
<th>Media</th>
<th>Use with</th>
<th>Use for</th>
<th>Characteristics</th>
<th>HP part numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>hp office paper</td>
<td>monochrome laser printers</td>
<td>high-volume office printing</td>
<td>75 g/m² (20-lb bond), 500 sheets, 87 bright</td>
<td>letter (HPC8511)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>letter, 3-hole prepunched (HPC3HP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>legal (HPC8514)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11 by 17 (tabloid) (HPC1117)</td>
</tr>
<tr>
<td>hp multipurpose paper</td>
<td>monochrome laser printers</td>
<td>correspondence, memos, and reports</td>
<td>75 g/m² (20-lb bond), 500 sheets, 90 bright</td>
<td>letter (HPM1120)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>letter, 3-hole prepunched (HPM113H)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>legal (HPM1420)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11 by 17 (tabloid) (HPM1720)</td>
</tr>
<tr>
<td>hp printing paper</td>
<td>monochrome laser printers</td>
<td>correspondence, reports, and in-house newsletters</td>
<td>83 g/m² (22-lb bond), 500 sheets, 92 bright</td>
<td>letter (HPP1122)</td>
</tr>
<tr>
<td>hp color laser paper</td>
<td>monochrome and color laser printers</td>
<td>newsletters and color documents</td>
<td>90 g/m² (24-lb bond), 500 sheets, smooth matte finish on both sides, 96 bright</td>
<td>letter (HPL245R)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11 by 17 (tabloid) (HPL2417)</td>
</tr>
<tr>
<td>hp color laser paper</td>
<td>monochrome and color laser printers</td>
<td>newsletters and color documents</td>
<td>105 g/m² (28-lb bond), 500 sheets, smooth matte finish on both sides, 96 bright</td>
<td>letter (HPL285R)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11 by 17 (tabloid) (HPL2817)</td>
</tr>
<tr>
<td>hp premium choice LaserJet paper</td>
<td>monochrome and color laser printers</td>
<td>proposals and charts</td>
<td>160 g/m² (42-lb bond), 250 sheets, matte finish on both sides, 98 bright</td>
<td>letter (HPU1132)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11 by 17 (tabloid) (HPU1732)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A4 (Europe) (CHP413)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A3 (Europe) (CHP421)</td>
</tr>
</tbody>
</table>
Glossy paper

**CAUTION**
Not all HP LaserJet printers support printing on all of the print media that is listed in the following table. Please see the support documentation that came with your product to determine if your product supports a particular type of print media.

<table>
<thead>
<tr>
<th>Media</th>
<th>Use with</th>
<th>Use for</th>
<th>Characteristics</th>
<th>HP part numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>hp LaserJet paper</td>
<td>monochrome and color laser printers</td>
<td>reports, user manuals, letterhead, and correspondence</td>
<td>90 g/m² (24-lb bond), 500 sheets, matte finish on both sides, 96 bright</td>
<td>letter (HPJ124) letter, 3-hole prepunched (HPJ113H) legal (HPJ1424) 11 by 17 (tabloid) (HPJ1724) A4 (Europe) (CHP310)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Media</th>
<th>Use with</th>
<th>Use for</th>
<th>Characteristics</th>
<th>HP part numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>hp high gloss laser paper</td>
<td>monochrome and color laser printers</td>
<td>brochures, catalogs, business plans, photographs, and images</td>
<td>120 g/m² (32-lb bond), 200 sheets, high-gloss finish coating on both sides, 95 bright</td>
<td>letter (Q2419A) 11 by 17 (tabloid) (Q2420A) A4 (Q2421A) A3 (Q2422A)</td>
</tr>
<tr>
<td>hp soft gloss laser paper</td>
<td>monochrome and color laser printers</td>
<td>flyers, handouts, sales briefs, proposals, and color images</td>
<td>120 g/m² (32-lb bond), 200 sheets, satin finish coating on both sides, 96 bright</td>
<td>letter (Q4179A) A4 (C4179B)</td>
</tr>
<tr>
<td>hp soft gloss laser paper</td>
<td>monochrome and color laser printers</td>
<td>flyers, handouts, sales briefs, proposals, and color images</td>
<td>105 g/m² (28-lb bond), 500 sheets, satin finish coating on both sides, 96 bright</td>
<td>letter (Q2415A) 11 by 17 (tabloid) (Q2416A) A4 (Q2417A) A3 (Q2418A)</td>
</tr>
</tbody>
</table>
Heavy paper, cover paper, and cardstock

**CAUTION** Not all HP LaserJet printers support printing on all of the print media that is listed in the following table. Please see the support documentation that came with your product to determine if your product supports a particular type of print media.

<table>
<thead>
<tr>
<th>Media</th>
<th>Use with</th>
<th>Use for</th>
<th>Characteristics</th>
<th>HP part numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>hp premium cover paper</td>
<td>monochrome and color laser printers</td>
<td>postcards and document covers</td>
<td>200 g/m² (75-lb cover), 100 sheets, super smooth matte finish on both sides, 96 bright</td>
<td>letter (Q2413A) A4 (Q2414A)</td>
</tr>
<tr>
<td>hp tough paper</td>
<td>monochrome and color laser printers</td>
<td>signs, maps, restaurant menus, waterproof documents, and tearproof documents</td>
<td>5 mil thick (0.197 inches) (approximately 44-lb bond equivalent), 50 sheets, satin finish coating on both sides, waterproof, tearproof</td>
<td>letter (Q1298A) A4 (Q1298B)</td>
</tr>
</tbody>
</table>

Recycled paper

**CAUTION** Not all HP LaserJet printers support printing on the print media that is listed in the following table. Please see the support documentation that came with your product to determine if your product supports a particular type of print media.

<table>
<thead>
<tr>
<th>Media</th>
<th>Use with</th>
<th>Use for</th>
<th>Characteristics</th>
<th>HP part numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>hp office recycled paper</td>
<td>monochrome laser printers</td>
<td>training manuals and general office printing</td>
<td>75 g/m² (20-lb bond), 500 sheets, matte finish on both sides, contains 30 percent post-consumer content (satisfies US Executive Order 13101), 87 bright</td>
<td>letter (HPE1120) 3-hole prepunched (HPE113H) legal (HPE1420)</td>
</tr>
</tbody>
</table>
Transparencies

**CAUTION** Not all HP LaserJet printers support printing on transparencies. Please see the support documentation that came with your product to determine if your product supports transparencies.

<table>
<thead>
<tr>
<th>Media</th>
<th>Use with</th>
<th>Use for</th>
<th>Characteristics</th>
<th>HP part numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>hp color LaserJet transparencies</td>
<td>HP color LaserJet printers</td>
<td>transparencies</td>
<td>5 mil thick (0.197 inches), 50 sheets, premium coated on both sides</td>
<td>letter (C2934A) A4 (C2936A)</td>
</tr>
<tr>
<td>hp LaserJet monochrome transparencies</td>
<td>HP monochrome LaserJet printers</td>
<td>transparencies</td>
<td>4.3 mil thick (0.169 inches), 50 sheets</td>
<td>letter (92296T) A4 (92296U)</td>
</tr>
</tbody>
</table>
A-series of paper sizes  The ISO A-series of paper sizes is based on the Lichtenberg Ratio, which is an aspect ratio of 1 to the square root of 2. A0 size paper is 841 by 1,189 mm in size, which is 1 square meter in area and has a 1.414:1 aspect ratio. Each subsequent size is half the area (determined by halving the long dimension). If the value is an odd number (for example, 1,189 mm), then the subsequent value after halving is truncated (for example, 594 mm). The aspect ratio of 1:1.414 is maintained throughout the A-series of paper sizes.

basis weight  Basis weight is the weight of a ream of paper (500 sheets) that has been cut to the basic size. Basis weight is an important characteristic of paper. Paper that is too light or too heavy can cause misfeeds, misstacking, jams, poor print quality, or excessive mechanical wear to the printer.

basic size  Basic size is a specified size for a grade of paper. Basic sizes have evolved from custom and usage.

brightness  Brightness refers to the reflectance and whiteness of a sheet of paper. Higher brightness papers are more expensive to produce and are usually associated with higher quality.

caliper  Caliper is the thickness of a sheet of paper or other print media. It is typically specified in mils (one-thousandth of an inch) or millimeters. It is closely associated with paper weight but not directly associated, because some papers have more bulk (more density) than others.

carrier sheet  The carrier sheet is the sheet to which labels are temporarily attached. Usually this sheet has a “slick” feeling or appears shiny.

composition  Composition (furnish) is the mixture of various materials, such as fiber, filler, sizing materials, and other additives, that are used to make the paper stock. Fillers such as calcium carbonate, clay, or talc are added to paper to fill in the spaces between fibers.

For optimum performance of your HP LaserJet printer, use paper that is made from 100 percent chemical wood pulp or cotton fiber. Recycled paper, made with no more than 5 percent groundwood, is also acceptable. To ensure that paper of a special fiber composition will work correctly in your printer, test it before purchasing large quantities.

copier paper  A grade of paper that is suitable for printing in the electrophotographic process. This paper is characterized by having a smooth finish, heat stability, non-curling qualities, and good aesthetic properties (such as color, brightness, and cleanliness).
curl  The amount of curvature or wave in a sheet before or after printing. Sheets might curl before printing if they are exposed to humid conditions or very dry conditions. Residual stresses in the sheet or high moisture content can also affect the level of curl after printing. Good process control by the paper manufacturer and proper paper storage and handling will minimize curl problems.

Curl is typically measured by laying the sheet of paper on a flat surface and measuring the height of the corners. There are two types of curl:

- In-ream curl is the amount of curl in a sheet of paper before printing. In-ream curl results from the paper-manufacturing process or from exposure to the environment. Paper with excessive in-ream curl might lead to feeding and print-quality problems.
- Post-image curl is the amount of curl in a sheet of paper after printing. Post-image curl results from exposure to the fusing process and the paper path in the printer. Paper that has excessive post-image curl can be difficult to handle or to use in automatic-feed photocopiers.

cut-edge condition  Condition of the edges of paper, which can affect paper's ability to feed properly.

cutouts  Any portion of the media that has been removed, including binder holes, notches, square cuts.

density  Relative darkness of the print.

die-cuts  Cuts between individual labels. Die-cuts are made by a machine in a predefined pattern.

duplexing  Printing on both the front and back sides of a sheet of paper.

electrical properties  The electrical resistivity of the print media. The electrical resistivity of the paper is one of the most important properties for copier- and laser-grade papers. If resistance is too high, static buildup problems can occur with paper handling and print quality. If electrical resistivity is too low, poor image transfer and low density can result. Generally, paper has very high resistance, so paper manufacturers add salts or other materials to lower the resistivity.

face sheet  The face sheet is the printable surface on a sheet of adhesive labels. It can be made from different materials, including paper, polyester, and vinyl. It is common for a face sheet to be die-cut so that individual shapes can be removed after printing. Polyester and vinyl labels require a topcoat to provide the proper electrical and toner adhesion properties. It is important to purchase labels from a knowledgeable supplier who is familiar with these processes and with laser printing.

felt side versus wire side  Some methods of manufacturing paper result in two-sided paper that has properties that differ from one side to the other. Along with other process variations, these properties can make one side of the paper the preferred side on which to print. The “top” side of the paper sheet, as it is formed, is known as the felt side. The “bottom” side is known as the wire side. Most manufacturers indicate the preferred printing side on the package. See “Reading a ream label” on page 5.
**finish/smoothness**  Characterizes a paper's finish. Textured paper causes inconsistent or blotchy print and can wrinkle. Printed output on textured paper might have broken character edges and show poor toner adhesion. Glossy-smooth paper tends to highlight defects and might not hold toner. For best results, use smooth paper.

Paper for laser printers should not have a heavy texture or a glossy smoothness unless the paper is specifically designed to work with your HP LaserJet printer. If you want to use a glossy paper in the HP color LaserJet printer, try HP's soft gloss and high gloss paper (see “Ordering HP print media” on page 35). For sharp resolution or detail, use a smooth paper.

Paper finish is typically measured by using air-leak methods. We recommend a range for smoothness that uses the Sheffield method. Equivalent values for other methods can be found in “Comparisons of paper smoothness” on page 33.

Avoid using paper that has embossed or raised surfaces, because spotty printing and misfeeding can occur. It is possible to print satisfactorily on paper that has embossed areas in the leading edge, trailing edge, or areas where print will not appear on the paper; however, misfeeding or jamming can occur.

**finishing precision**  Dimensions (length and width) of a piece of media, how closely it is cut to the stated size, and how square it is. Use media that is accurately cut, so that it can be handled properly.

**furnish (composition)**  Composition (furnish) is the mixture of various materials, such as fiber, filler, sizing materials, and other additives, that is used to make the paper stock.

**fusing compatibility**  Compatibility of print media used in the printer and how it reacts when exposed to the fuser's temperature of:

- 205° C (401° F) for 0.1 second (0.2 second for HP color LaserJet printers) for paper, labels, and envelopes; and
- 205° C (401° F) for 0.1 second (0.4 second for HP color LaserJet printers) for overhead transparency materials.

Print media should not discolor, melt, offset, release undesirable emissions, or break down in any way when exposed to these temperatures for the specified time period.

**grain**  The orientation of paper fibers in paper. Fibers tend to align themselves in the process direction of the paper machine. Papers are stiffer in the grain direction. Most cut sheet papers are cut long grain (that is, with the grain direction parallel with the long edge of the sheet). For heavier-weight papers (greater than 135 g/m² in weight) Hewlett-Packard recommends using short-grain paper, if available, to improve feeding and reduce wear to the paper path.

**grammage**  Grammage is the metric standard for specifying paper weight and is expressed in grams per square meter.

**gray background**  Paper looks gray or appears dirty because small toner particles are transferred to non-printed areas (white space), and can be corrected by changing paper or increasing the toner density setting on your printer. This condition is a symptom of a print-quality problem.

**groundwood**  Wood fibers that are extracted using a mechanical rather than a chemical process. Groundwood papers are generally weaker than chemical-wood papers.

**ISO**  International Standards Organization.

**JIS**  Japanese Industrial Standards.
MFP  Multifunction peripheral; also known as multifunction product or multifunction printer.

mils  One mil equals 0.001 inches.

moisture content  How much moisture print media will absorb or lose, depending on the humidity in the surrounding air.

Paper is hygroscopic, that is, it will absorb or lose moisture depending on the humidity in the air around it. The moisture content of paper has a great effect on its resistivity. Paper will absorb moisture in a high-humidity environment and lose moisture in a low humidity environment. Small increases in moisture content greatly reduce resistivity while small decreases in moisture content greatly increase resistivity.

Moisture content can also affect other paper properties such as curl, stiffness, and dimensional size. Higher moisture content can make paper prone to curl and wrinkling during printing, make a sheet limp, and increase the dimensions of a cut sheet. Paper performance can change significantly with seasonal or weather changes, which affect the humidity in the printing environment.

packaging  Packaging is an important consideration when using paper in an HP LaserJet printer, because adequate packaging maintains the correct level of moisture and protects paper from damage during transport and storage.

perforations  A hole or series of holes punched through the paper to aid in the separation of one piece of paper from another.

pH  Refers to the acidity/alkalinity of paper as determined by the TAPPI (Technical Association of the Pulp and Paper Industry) cold-extraction method.

photocopy paper  See copier paper.

post-consumer waste  Manufactured material that the customer has used. Post-consumer waste can be office paper, mail, used boxes, old newspapers, or magazines.

pre-consumer waste  Material that never reaches the customer after it has been manufactured. Pre-consumer waste can be unused paper stock, bindery trimmings, envelope cuttings, business forms, or unsold books or magazines.

print media  Paper, envelopes, cardstock, overhead transparencies, and labels that are used with printers. Print media used in HP LaserJet printers must meet the guidelines and specifications listed in this guide.

ream  A ream is a quantity of 500 sheets of paper. Paper is often packaged and sold in reams.

simplex  Printing on one side of a sheet of paper.

smoothness  Surface smoothness is determined by measuring the rate of air flow between the sheet surface and a flat reference surface. Smoothness usually is expressed in Sheffield or Bekk units.

stiffness  How resistant print media is to bending or flexing. A minimum stiffness is required in order for paper to separate from the rollers inside of the printer. Most long-grain papers that are heavier than 60 g/m² will have adequate stiffness to transport through the printer. Generally, stiffness increases with paper weight.
**surface roughness**  Surface roughness of papers can affect print quality, feeding, and fusing (toner adhesion). If paper is very smooth, background particles are more easily seen, and sheets tend to stick together and create multiple-sheet feeds. Very rough papers can degrade transfer of toner onto the page, causing jagged edges or toner scatter. Fusing (toner adhesion) can also be drastically reduced on very rough papers. Roughness is usually measured using an air leak method such as the Sheffield method. Typical Sheffield values for different paper surfaces are within the following ranges:

- about 120 to 150 for photocopy grades (wove or regular finishes)
- about 40 to 60 for very smooth laser or coated grades
- about 250 to 300 for cockle finishes
- greater than 350 for traditional linen and laid finishes

**watermark**  An impression made in a wet sheet of paper as it is being manufactured. Watermarks are visible when the sheet is held up to light. They appear as a word, symbol, or other impression.

**waste paper**  A generic term used for post-consumer waste and some pre-consumer waste.

**wax pick**  Characterizes the resistance of the surface layer of a sheet to the breakaway of surface fragments. Expressed in Dennison units.
Index

A
acclimating media 4, 19
accuracy specifications, dimensional 10
acidity specifications 6
acrylic-based adhesives 15
adding paper. See loading paper
adhesive labels. See labels, adhesive
adhesive specifications 15
alignment, troubleshooting 23
alkalinity specifications 6
archival paper 6
A-series paper sizes, defined 39
automatic duplexing 17

B
background particles, troubleshooting 27, 28
bar coding 18
basic size, defined 39
basis weight
  defined 39
  envelope specifications 13
  equivalence tables 29, 30
  paper specifications 10
Bekk units 33
Bendtsen units 33
bond grade 29, 30
bond papers, using 4, 6
book grade 29, 30
both sides, printing on 17
bottom side of paper 40
brightness, defined 39
bristol grade 29, 30
brochures, papers for 36
bulk mailings, preparing 17
buying HP print media 35

calcium carbonate fillers 4, 23
caliper
  defined 39
  envelope specifications 13
  label specifications 15
  paper specifications 10
  transparency specifications 16
carbonless papers, avoiding 6
cardstock
  HP 36
  standard sizes 32
  troubleshooting 23
  using 7
carrier sheets, label 15, 39
cartons, storing 19
catalogs, paper for 36
characters, troubleshooting 28
checklist, troubleshooting 21, 22
chemical stability specifications 6
clasps, avoiding envelopes with 11
clay coated papers 6
coated papers 6, 22
cockle finishes 6
color laser paper, hp 35
color LaserJet transparencies, hp 37
colored paper 6
composition
  defined 39
  specifications 10
conditioning media 4, 19
converted media 8
copier-grade paper 7, 39
cotton fiber papers 4, 6
cover grade 29, 30
cover stock. See cardstock
curl
  defined 40
  envelope specifications 13
  paper specifications 10
  preventing 19
  troubleshooting 25
customer support 2
cut edge condition, defined 40
cutouts
  defined 40
  specifications 8, 9
debossed paper 7, 8
defective paper 9
definitions, terms 39
dennison scale 10
density
  defined 40
  settings 27, 28
die-cuts
  defined 40
  specifications 8, 9
dimensions
  accuracy specifications 10
  A-series papers 39
cardstock 32
  envelopes 12, 32
  paper, standard 31
double-sided printing 17
dropouts, troubleshooting 28
duplexing
  defined 40
  procedures for 17
dyes, temperature specifications 22
edgeweld, troubleshooting 5, 24
electrical surface resistivity
  defined 40
  paper specifications 10
  transparency specifications 16
electrostatic transfer operations 2
embossed paper 7, 8
encapsulated adhesives, avoiding 11
engraved paper 8
envelopes
  feeding, troubleshooting 22
gray areas, troubleshooting 27
jams, frequent 26
large 12
mailings, preparing 17
printers supporting 11
specifications 11, 12, 13
standard sizes 32
storing 19
testing 12
text-on-text contact, avoiding 18
wrinkled, troubleshooting 27
environments
  acclimating media 4, 19
  storing media 19
equivalence tables
  basis weight 29
  envelope size 32
  paper size 31
  smoothness 33
  weight 30

F
  face sheets, label 15, 40
  fanning paper 5
  feeding problems
    duplexing 17
    envelopes 26
    paper 24
    preprinted papers 8
  felt side, defined 40
  fillers 4, 23
  film, transparency. See transparencies
  finish, defined 41
  finishing precision, defined 41
  flimsy paper, troubleshooting 23
  flyers, papers for 36
  folders, vinyl 6, 19
  forms
    multipart, avoiding 22
    preprinted, using 8
  furnish
    defined 41
    specifications 10
  fuser
    buildup on 6
    operations of 2
    temperature specifications 10
  fusing compatibility, defined 41

G
  glossary 39
  glossy paper
    defined 7
    HP 36
  glued papers 8
  grades, paper 29, 30
  grain
    curling, affects on 25
    defined 41
    envelopes 13
    identifying 5
    specifications, paper 10
  grammage, defined 41
    See also weight
  gray background
    defined 41
    troubleshooting 27
  groundwood, defined 41
  Gurley units 33

H
  heat, fuser
    operations of 2
    temperature specifications 10
  heavy paper
    HP 36
    standard sizes 32
    troubleshooting 23
    using 7
  high gloss laser paper, hp 36
  hollow images, troubleshooting 28
  HP color LaserJet printers
    bond paper, using 4
    colored paper, using 6
    information for 1
    operations 2
    HP LaserJet 2000 1
    HP LaserJet 2686A 1
    HP LaserJet 500 1
    HP LaserJet Plus 1
    HP LaserJet printers
      media designed for 1
      operations 2
    HP media, ordering 35
    HP Monochrome LaserJet printers 1
    HP Sales and Service Offices 2
    HP website 2
  humidity, storing media 19

I
  image quality, troubleshooting 27
  index cards, sizes 32
  index grade 29, 30
  inks, heat-resistant 8
  input tray, loading 5, 24
  inserting paper. See loading paper
  ISO, defined 41

J
  jams
    duplexing 17
    envelopes 26
    paper 23
    preprinted papers 8
  JIS, defined 41
print quality, troubleshooting 27
printing paper, hp 35
proposals, paper for 36
punched paper 8, 9
purchasing HP print media 35

Q
quality, troubleshooting 27

R
reams
  acclimating 4, 19
defined 42
labels, reading 5
opening 5
storing 19
recycled paper
  HP 37
specifications 8
resistivity, electrical
  defined 40
  paper specifications 10
  transparency specifications 16
rollers, swelling of 6
rough papers 4, 6
roughness
  defined 43
  envelope specifications 13
  paper specifications 10

S
Sales and Service Offices, HP 2
scanning laser beam, operations of 2
sealers, envelopes 11
self-mailers, avoiding 17
separating paper 5, 24
sheets, separating 5, 24
Sheffield method, equivalence tables 33
shipping media 19
sides of paper
  felt vs. wire 40
  loading correctly 5
  printing on both 17
simplex, defined 42
sizes
  accuracy specifications 10
  A-series papers 39
cardstock 32
  envelopes 12, 32
  paper, standard 31
smeared toner, troubleshooting 28
smoothness
  defined 41, 42
  equivalence tables 33
soft gloss laser paper, hp 36
sorting mailings 18
specialty papers 8, 9
stamps, precanceled 18
standard sizes
  card stock 32
  envelopes 32
  paper 31
static, transfer operations 2
sticking together, sheets 5, 24
stiffness
  defined 42
  specifications 10
troubleshooting 23
storing media
  acclimating 4, 19
  environments for 19
  labels, adhesive 15
support, customer 2
surface resistivity, electrical
  defined 40
  paper specifications 10
  transparency specifications 16
surface roughness
  defined 43
  envelope specifications 13
  paper specifications 10

T
tag grade 29, 30
talc fillers 4, 23
temperature specifications
  preprinted papers 8, 10
  storing media 19
terms, definitions 39
testing media
  envelopes 12
  non-HP 3
text grade 29, 30
text quality, troubleshooting 28
text-on-text contact, avoiding 18
thermography 8
thick paper. See heavy paper
tin foil, troubleshooting 23
toner
  chemical stability of 6
density 27, 28
  operations of 2
  recommended types 17
top side of paper 40
torn paper 9
tough paper, hp 36
translucent, electrostatic 2
transparencies
  HP 37
  specifications 16
troubleshooting
  checklist 21, 22
  envelopes 22, 26
  multi-feeds 24
  paper jams 23
  post-image curl 25
  print quality 27
text quality 28
  wrinkled envelopes 27
types of paper 6

U
U.S. paper grades 29, 30
United State Postal Service 17

V
vinyl folders, avoiding 6, 19
volume resistivity, specifications for 10
W
warping, preventing 19
warranty 3
waste paper, defined 43
watermarks
  defined 43
  papers with 4, 6
wave. See curl
wax pick
  defined 43
  specifications 10
websites
  HP 2
  ordering media 35
weight
  basis, equivalence tables 29
  defined 39
  envelope specifications 11, 13
  equivalence tables 30
  heavy paper 7, 23
  paper specifications 10
  ream label 5
windows, avoiding envelopes with 11
wire side, defined 40
wrapping
  ream labels 5
  specifications 10
  storing media 19
wrinkled envelopes, troubleshooting 27

Z
zone coating, adhesives 15